Pressure-induced dramatic changes in organic–inorganic halide perovskites
نویسندگان
چکیده
Organic-inorganic halide perovskites have emerged as a promising family of functional materials for advanced photovoltaic and optoelectronic applications with high performances and low costs. Various chemical methods and processing approaches have been employed to modify the compositions, structures, morphologies, and electronic properties of hybrid perovskites. However, challenges still remain in terms of their stability, the use of environmentally unfriendly chemicals, and the lack of an insightful understanding into structure-property relationships. Alternatively, pressure, a fundamental thermodynamic parameter that can significantly alter the atomic and electronic structures of functional materials, has been widely utilized to further our understanding of structure-property relationships, and also to enable emergent or enhanced properties of given materials. In this perspective, we describe the recent progress of high-pressure research on hybrid perovskites, particularly regarding pressure-induced novel phenomena and pressure-enhanced properties. We discuss the effect of pressure on structures and properties, their relationships and the underlying mechanisms. Finally, we give an outlook on future research avenues in which high pressure and related alternative methods such as chemical tailoring and interfacial engineering may lead to novel hybrid perovskites uniquely suited for high-performance energy applications.
منابع مشابه
Pressure-Induced Structural Evolution and Band Gap Shifts of Organometal Halide Perovskite-Based Methylammonium Lead Chloride.
Organometal halide perovskites are promising materials for optoelectronic devices. Further development of these devices requires a deep understanding of their fundamental structure-property relationships. The effect of pressure on the structural evolution and band gap shifts of methylammonium lead chloride (MAPbCl3) was investigated systematically. Synchrotron X-ray diffraction and Raman experi...
متن کاملPerovskites: Structure and Growth Control of Organic–Inorganic Halide Perovskites for Optoelectronics: From Polycrystalline Films to Single Crystals (Adv. Sci. 4/2016)
متن کامل
Post-synthetic halide conversion and selective halogen capture in hybrid perovskites.
Reaction with halogen vapor allows us to post-synthetically exchange halides in both three- (3D) and two-dimensional (2D) organic-inorganic metal-halide perovskites. Films of 3D Pb-I perovskites cleanly convert to films of Pb-Br or Pb-Cl perovskites upon exposure to Br2 or Cl2 gas, respectively. This gas-solid reaction provides a simple method to produce the high-quality Pb-Br or Pb-Cl perovski...
متن کاملPhoto-induced halide redistribution in organic–inorganic perovskite films
Organic-inorganic perovskites such as CH3NH3PbI3 are promising materials for a variety of optoelectronic applications, with certified power conversion efficiencies in solar cells already exceeding 21%. Nevertheless, state-of-the-art films still contain performance-limiting non-radiative recombination sites and exhibit a range of complex dynamic phenomena under illumination that remain poorly un...
متن کاملEnvironmental Effects on the Photophysics of Organic–Inorganic Halide Perovskites
The photophysical properties of films of organic-inorganic lead halide perovskites under different ambient conditions are herein reported. We demonstrate that their luminescent properties are determined by the interplay between photoinduced activation and darkening processes, which strongly depend on the atmosphere surrounding the samples. We have isolated oxygen and moisture as the key element...
متن کامل